Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612533

RESUMO

Colorectal cancer (CRC) screening relies primarily on stool analysis to identify occult blood. However, its sensitivity for detecting precancerous lesions is limited, requiring the development of new tools to improve CRC screening. Carcinogenesis involves significant alterations in mucosal epithelium glycocalyx that decisively contribute to disease progression. Building on this knowledge, we examined patient series comprehending premalignant lesions, colorectal tumors, and healthy controls for the T-antigen-a short-chain O-glycosylation of proteins considered a surrogate marker of malignancy in multiple solid cancers. We found the T-antigen in the secretions of dysplastic lesions as well as in cancer. In CRC, T-antigen expression was associated with the presence of distant metastases. In parallel, we analyzed a broad number of stools from individuals who underwent colonoscopy, which showed high T expressions in high-grade dysplasia and carcinomas. Employing mass spectrometry-based lectin-affinity enrichment, we identified a total of 262 proteins, 67% of which potentially exhibited altered glycosylation patterns associated with cancer and advanced pre-cancerous lesions. Also, we found that the stool (glyco)proteome of pre-cancerous lesions is enriched for protein species involved in key biological processes linked to humoral and innate immune responses. This study offers a thorough analysis of the stool glycoproteome, laying the groundwork for harnessing glycosylation alterations to improve non-invasive cancer detection.


Assuntos
Neoplasias Colorretais , Lesões Pré-Cancerosas , Humanos , Neoplasias Colorretais/diagnóstico , Hiperplasia , Carcinogênese , Antígenos Virais de Tumores
2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542319

RESUMO

Bladder cancer (BCa) research relying on Omics approaches has increased over the last few decades, improving the understanding of BCa pathology and contributing to a better molecular classification of BCa subtypes. To gain further insight into the molecular profile underlying the development of BCa, a systematic literature search was performed in PubMed until November 2023, following the PRISMA guidelines. This search enabled the identification of 25 experimental studies using mass spectrometry or nuclear magnetic resonance-based approaches to characterize the metabolite signature associated with BCa. A total of 1562 metabolites were identified to be altered by BCa in different types of samples. Urine samples displayed a higher likelihood of containing metabolites that are also present in bladder tumor tissue and cell line cultures. The data from these comparisons suggest that increased concentrations of L-isoleucine, L-carnitine, oleamide, palmitamide, arachidonic acid and glycoursodeoxycholic acid and decreased content of deoxycytidine, 5-aminolevulinic acid and pantothenic acid should be considered components of a BCa metabolome signature. Overall, molecular profiling of biological samples by metabolomics is a promising approach to identifying potential biomarkers for early diagnosis of different BCa subtypes. However, future studies are needed to understand its biological significance in the context of BCa and to validate its clinical application.


Assuntos
Biomarcadores Tumorais , Neoplasias da Bexiga Urinária , Humanos , Biomarcadores Tumorais/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Metabolômica/métodos , Metaboloma
3.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542435

RESUMO

Muscle-invasive bladder cancer (MIBC) remains a pressing health concern due to conventional treatment failure and significant molecular heterogeneity, hampering the development of novel targeted therapeutics. In our quest for novel targetable markers, recent glycoproteomics and bioinformatics data have pinpointed (glucose transporter 1) GLUT1 as a potential biomarker due to its increased expression in tumours compared to healthy tissues. This study explores this hypothesis in more detail, with emphasis on GLUT1 glycosylation patterns and cancer specificity. Immunohistochemistry analysis across a diverse set of human bladder tumours representing all disease stages revealed increasing GLUT1 expression with lesion severity, extending to metastasis, while remaining undetectable in healthy urothelium. In line with this, GLUT1 emerged as a marker of reduced overall survival. Revisiting nanoLC-EThcD-MS/MS data targeting immature O-glycosylation on muscle-invasive tumours identified GLUT1 as a carrier of short glycosylation associated with invasive disease. Precise glycosite mapping uncovered significant heterogeneity between patient samples, but also common glycopatterns that could provide the molecular basis for targeted solutions. Immature O-glycosylation conferred cancer specificity to GLUT1, laying the molecular groundwork for enhanced targeted therapeutics in bladder cancer. Future studies should focus on a comprehensive mapping of GLUT1 glycosites for highly specific cancer-targeted therapy development for bladder cancer.


Assuntos
Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária , Humanos , Glicosilação , Transportador de Glucose Tipo 1/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/patologia
4.
ACS Nano ; 18(14): 10088-10103, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535625

RESUMO

Advanced-stage solid primary tumors and metastases often express mucin 16 (MUC16), carrying immature glycans such as the Tn antigen, resulting in specific glycoproteoforms not found in healthy human tissues. This presents a valuable approach for designing targeted therapeutics, including cancer glycovaccines, which could potentially promote antigen recognition and foster the immune response to control disease spread and prevent relapse. In this study, we describe an adjuvant-free poly(lactic-co-glycolic acid) (PLGA)-based nanoglycoantigen delivery approach that outperforms conventional methods by eliminating the need for protein carriers while exhibiting targeted and adjuvant properties. To achieve this, we synthesized a library of MUC16-Tn glycoepitopes through single-pot enzymatic glycosylation, which were then stably engrafted onto the surface of PLGA nanoparticles, generating multivalent constructs that better represent cancer molecular heterogeneity. These glycoconstructs demonstrated affinity for Macrophage Galactose-type Lectin (MGL) receptor, known to be highly expressed by immature antigen-presenting cells, enabling precise targeting of immune cells. Moreover, the glycopeptide-grafted nanovaccine candidate displayed minimal cytotoxicity and induced the activation of dendritic cells in vitro, even in the absence of an adjuvant. In vivo, the formulated nanovaccine candidate was also nontoxic and elicited the production of IgG specifically targeting MUC16 and MUC16-Tn glycoproteoforms in cancer cells and tumors, offering potential for precise cancer targeting, including targeted immunotherapies.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lectinas/metabolismo , Glicosilação , Glicopeptídeos/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , Células Dendríticas
5.
J Control Release ; 367: 540-556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301927

RESUMO

Cancer presents a high mortality rate due to ineffective treatments and tumour relapse with progression. Cancer vaccines hold tremendous potential due to their capability to eradicate tumour and prevent relapse. In this study, we present a novel glycovaccine for precise targeting and immunotherapy of aggressive solid tumours that overexpress CD44 standard isoform (CD44s) carrying immature Tn and sialyl-Tn (sTn) O-glycans. We describe an enzymatic method and an enrichment strategy to generate libraries of well-characterized cancer-specific CD44s-Tn and/or sTn glycoproteoforms, which mimic the heterogeneity found in tumours. We conjugated CD44-Tn-derived glycopeptides with carrier proteins making them more immunogenic, with further demonstration of the importance of this conjugation to overcome the glycopeptides' intrinsic toxicity. We have optimized the glycopeptide-protein maleimide-thiol conjugation chemistry to avoid undesirable cross-linking between carrier proteins and CD44s glycopeptides. The resulting glycovaccines candidates were well-tolerated in vivo, inducing both humoral and cellular immunity, including immunological memory. The generated antibodies exhibited specific reactivity against synthetic CD44s-Tn glycopeptides, CD44s-Tn glycoengineered cells, and human tumours. In summary, we present a promising prototype of a cancer glycovaccine for future therapeutical pre-clinical efficacy validation.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Combinadas , Antígenos Glicosídicos Associados a Tumores/química , Glicoconjugados , Neoplasias/terapia , Imunoterapia , Glicopeptídeos/química , Proteínas de Transporte , Recidiva , Receptores de Hialuronatos
6.
Proc Natl Acad Sci U S A ; 120(20): e2214853120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155874

RESUMO

Gastric cancer is a dominating cause of cancer-associated mortality with limited therapeutic options. Here, we show that syndecan-4 (SDC4), a transmembrane proteoglycan, is highly expressed in intestinal subtype gastric tumors and that this signature associates with patient poor survival. Further, we mechanistically demonstrate that SDC4 is a master regulator of gastric cancer cell motility and invasion. We also find that SDC4 decorated with heparan sulfate is efficiently sorted in extracellular vesicles (EVs). Interestingly, SDC4 in EVs regulates gastric cancer cell-derived EV organ distribution, uptake, and functional effects in recipient cells. Specifically, we show that SDC4 knockout disrupts the tropism of EVs for the common gastric cancer metastatic sites. Our findings set the basis for the molecular implications of SDC4 expression in gastric cancer cells and provide broader perspectives on the development of therapeutic strategies targeting the glycan-EV axis to limit tumor progression.


Assuntos
Neoplasias Gástricas , Sindecana-4 , Humanos , Heparitina Sulfato/metabolismo , Invasividade Neoplásica , Neoplasias Gástricas/genética , Sindecana-4/genética , Sindecana-4/metabolismo
7.
Biotechnol Adv ; 65: 108144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37028466

RESUMO

Cancer remains a leading cause of death worldwide due to the lack of safer and more effective therapies. Cancer vaccines developed from neoantigens are an emerging strategy to promote protective and therapeutic anti-cancer immune responses. Advances in glycomics and glycoproteomics have unveiled several cancer-specific glycosignatures, holding tremendous potential to foster effective cancer glycovaccines. However, the immunosuppressive nature of tumours poses a major obstacle to vaccine-based immunotherapy. Chemical modification of tumour associated glycans, conjugation with immunogenic carriers and administration in combination with potent immune adjuvants constitute emerging strategies to address this bottleneck. Moreover, novel vaccine vehicles have been optimized to enhance immune responses against otherwise poorly immunogenic cancer epitopes. Nanovehicles have shown increased affinity for antigen presenting cells (APCs) in lymph nodes and tumours, while reducing treatment toxicity. Designs exploiting glycans recognized by APCs have further enhanced the delivery of antigenic payloads, improving glycovaccine's capacity to elicit innate and acquired immune responses. These solutions show potential to reduce tumour burden, while generating immunological memory. Building on this rationale, we provide a comprehensive overview on emerging cancer glycovaccines, emphasizing the potential of nanotechnology in this context. A roadmap towards clinical implementation is also delivered foreseeing advances in glycan-based immunomodulatory cancer medicine.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Células Apresentadoras de Antígenos , Neoplasias/tratamento farmacológico , Vacinas Anticâncer/uso terapêutico , Antígenos , Imunoterapia , Imunidade
9.
Theranostics ; 12(7): 3150-3177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547758

RESUMO

Rationale: Bladder cancer (BC) management demands the introduction of novel molecular targets for precision medicine. Cell surface glycoprotein CD44 has been widely studied as a potential biomarker of BC aggressiveness and cancer stem cells. However, significant alternative splicing and multiple glycosylation generate a myriad of glycoproteoforms with potentially distinct functional roles. The lack of tools for precise molecular characterization has led to conflicting results, delaying clinical applications. Addressing these limitations, we have interrogated the transcriptome and glycoproteome of a large BC patient cohort for splicing signatures. Methods:CD44 gene and its splicing variants were assessed by Real Time-Polymerase Chain Reaction (RT-PCR) and RNAseq in tumor tissues. The co-localization of CD44 and short O-glycans was evaluated by proximity ligation assay (PLA), immunohistochemistry and double-immunofluorescence. An innovative glycoproteogenomics approach, integrating transcriptomics-customized datasets and glycomics for protein annotation from nanoLC-ESI-MS/MS experiments, was developed and implemented to identify CD44 variants and associated glycosignatures. The impact of CD44 silencing on proliferation and invasion of BC cell lines and glycoengineered cells was determined by BrdU ELISA and Matrigel invasion assays, respectively. Antibody phosphoarrays were used to investigate the role of CD44 and its glycoforms in the activation of relevant oncogenic signaling pathways. Results: Transcriptomics analysis revealed remarkable CD44 isoforms heterogeneity in bladder cancer tissues, as well as associations between short CD44 standard splicing isoform (CD44s), invasion and poor prognosis. We further demonstrated that targeting short O-glycoforms such as the Tn and sialyl-Tn antigens was key to overcome the lack of cancer specificity presented by CD44. Glycoproteogenomics allowed, for the first time, the comprehensive characterization of CD44 splicing code at the protein level. The concept was applied to invasive human BC cell lines, glycoengineered cells, and tumor tissues, enabling unequivocal CD44s identification as well as associated glycoforms. Finally, we confirmed the link between CD44 and invasion in CD44s-enriched cells in vitro by small interfering RNA (siRNA) knockdown, supporting findings from BC tissues. The key role played by short-chain O-glycans in CD44-mediated invasion was also demonstrated through glycoengineered cell models. Conclusions: Overall, CD44s emerged as biomarker of poor prognosis and CD44-Tn/ Sialyl-Tn (STn) as promising molecular signatures for targeted interventions. This study materializes the concept of glycoproteogenomics and provides a key vision to address the cancer splicing code at the protein level, which may now be expanded to better understand CD44 functional role in health and disease.


Assuntos
Neoplasias da Bexiga Urinária , Processamento Alternativo/genética , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Masculino , Células-Tronco Neoplásicas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária/patologia
10.
J Exp Clin Cancer Res ; 41(1): 143, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428302

RESUMO

Cancer cells can evade immune responses by exploiting inhibitory immune checkpoints. Immune checkpoint inhibitor (ICI) therapies based on anti-CTLA-4 and anti-PD-1/PD-L1 antibodies have been extensively explored over the recent years to unleash otherwise compromised anti-cancer immune responses. However, it is also well established that immune suppression is a multifactorial process involving an intricate crosstalk between cancer cells and the immune systems. The cancer glycome is emerging as a relevant source of immune checkpoints governing immunosuppressive behaviour in immune cells, paving an avenue for novel immunotherapeutic options. This review addresses the current state-of-the-art concerning the role played by glycans controlling innate and adaptive immune responses, while shedding light on available experimental models for glycoimmunology. We also emphasize the tremendous progress observed in the development of humanized models for immunology, the paramount contribution of advances in high-throughput single-cell analysis in this context, and the importance of including predictive machine learning algorithms in translational research. This may constitute an important roadmap for glycoimmunology, supporting careful adoption of models foreseeing clinical translation of fundamental glycobiology knowledge towards next generation immunotherapies.


Assuntos
Neoplasias , Humanos , Imunoterapia , Neoplasias/tratamento farmacológico
11.
Adv Exp Med Biol ; 1329: 1-33, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34664231

RESUMO

Circulating tumour cells (CTC) are rare cells that actively detach or are shed from primary tumours into the lymph and blood. Some CTC subpopulations gain the capacity to survive, home and colonize distant locations, forming metastasis. This results from a multifactorial process in which cancer cells optimize motility, invasion, immune escape and cooperative relationships with microenvironmental cues. Here we present evidences of a self-fuelling molecular crosstalk between cancer cells and the tumour stroma supporting the main milestones leading to metastasis. We discuss how the tumour microenvironment supports pre-metastatic niches and CTC development and ultimately dictates CTC fate in targeted organs. Finally, we highlight the key role played by protein glycosylation in metastasis development, its prompt response to microenvironmental stimuli and the tremendous potential of glycan-based molecular signatures for liquid biopsies and targeted therapeutics.


Assuntos
Células Neoplásicas Circulantes , Microambiente Tumoral , Contagem de Células , Glicosilação , Humanos , Polissacarídeos
12.
J Exp Clin Cancer Res ; 40(1): 191, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108014

RESUMO

BACKGROUND: Muscle invasive bladder cancer (MIBC) remains amongst the deadliest genitourinary malignancies due to treatment failure and extensive molecular heterogeneity, delaying effective targeted therapeutics. Hypoxia and nutrient deprivation, oversialylation and O-glycans shortening are salient features of aggressive tumours, creating cell surface glycoproteome fingerprints with theranostics potential. METHODS: A glycomics guided glycoproteomics workflow was employed to identify potentially targetable biomarkers using invasive bladder cancer cell models. The 5637 and T24 cells O-glycome was characterized by mass spectrometry (MS), and the obtained information was used to guide glycoproteomics experiments, combining sialidase, lectin affinity and bottom-up protein identification by nanoLC-ESI-MS/MS. Data was curated by a bioinformatics approach developed in-house, sorting clinically relevant molecular signatures based on Human Protein Atlas insights. Top-ranked targets and glycoforms were validated in cell models, bladder tumours and metastases by MS and immunoassays. Cells grown under hypoxia and glucose deprivation disclosed the contribution of tumour microenvironment to the expression of relevant biomarkers. Cancer-specificity was validated in healthy tissues by immunohistochemistry and MS in 20 types of tissues/cells of different individuals. RESULTS: Sialylated T (ST) antigens were found to be the most abundant glycans in cell lines and over 900 glycoproteins were identified potentially carrying these glycans. HOMER3, typically a cytosolic protein, emerged as a top-ranked targetable glycoprotein at the cell surface carrying short-chain O-glycans. Plasma membrane HOMER3 was observed in more aggressive primary tumours and distant metastases, being an independent predictor of worst prognosis. This phenotype was triggered by nutrient deprivation and concomitant to increased cellular invasion. T24 HOMER3 knockdown significantly decreased proliferation and, to some extent, invasion in normoxia and hypoxia; whereas HOMER3 knock-in increased its membrane expression, which was more pronounced under glucose deprivation. HOMER3 overexpression was associated with increased cell proliferation in normoxia and potentiated invasion under hypoxia. Finally, the mapping of HOMER3-glycosites by EThcD-MS/MS in bladder tumours revealed potentially targetable domains not detected in healthy tissues. CONCLUSION: HOMER3-glycoforms allow the identification of patients' subsets facing worst prognosis, holding potential to address more aggressive hypoxic cells with limited off-target effects. The molecular rationale for identifying novel bladder cancer molecular targets has been established.


Assuntos
Biomarcadores/metabolismo , Hipóxia Celular/genética , Glucose/metabolismo , Glicoproteínas/metabolismo , Proteínas de Arcabouço Homer/metabolismo , Proteômica/métodos , Neoplasias da Bexiga Urinária/genética , Proliferação de Células , Humanos , Transfecção , Microambiente Tumoral
13.
Genomics Proteomics Bioinformatics ; 19(1): 25-43, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-34118464

RESUMO

Molecular-assisted precision oncology gained tremendous ground with high-throughput next-generation sequencing (NGS), supported by robust bioinformatics. The quest for genomics-based cancer medicine set the foundations for improved patient stratification, while unveiling a wide array of neoantigens for immunotherapy. Upfront pre-clinical and clinical studies have successfully used tumor-specific peptides in vaccines with minimal off-target effects. However, the low mutational burden presented by many lesions challenges the generalization of these solutions, requiring the diversification of neoantigen sources. Oncoproteogenomics utilizing customized databases for protein annotation by mass spectrometry (MS) is a powerful tool toward this end. Expanding the concept toward exploring proteoforms originated from post-translational modifications (PTMs) will be decisive to improve molecular subtyping and provide potentially targetable functional nodes with increased cancer specificity. Walking through the path of systems biology, we highlight that alterations in protein glycosylation at the cell surface not only have functional impact on cancer progression and dissemination but also originate unique molecular fingerprints for targeted therapeutics. Moreover, we discuss the outstanding challenges required to accommodate glycoproteomics in oncoproteogenomics platforms. We envisage that such rationale may flag a rather neglected research field, generating novel paradigms for precision oncology and immunotherapy.


Assuntos
Vacinas Anticâncer , Neoplasias , Antígenos de Neoplasias/genética , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão
14.
Int J Mol Sci ; 22(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562270

RESUMO

Esophageal cancer (EC) is a life-threatening disease, demanding the discovery of new biomarkers and molecular targets for precision oncology. Aberrantly glycosylated proteins hold tremendous potential towards this objective. In the current study, a series of esophageal squamous cell carcinomas (ESCC) and EC-derived circulating tumor cells (CTCs) were screened by immunoassays for the sialyl-Tn (STn) antigen, a glycan rarely expressed in healthy tissues and widely observed in aggressive gastrointestinal cancers. An ESCC cell model was glycoengineered to express STn and characterized in relation to cell proliferation and invasion in vitro. STn was found to be widely present in ESCC (70% of tumors) and in CTCs in 20% of patients, being associated with general recurrence and reduced survival. Furthermore, STn expression in ESCC cells increased invasion in vitro, while reducing cancer cells proliferation. In parallel, an ESCC mass spectrometry-based proteomics dataset, obtained from the PRIDE database, was comprehensively interrogated for abnormally glycosylated proteins. Data integration with the Target Score, an algorithm developed in-house, pinpointed the glucose transporter type 1 (GLUT1) as a biomarker of poor prognosis. GLUT1-STn glycoproteoforms were latter identified in tumor tissues in patients facing worst prognosis. Furthermore, healthy human tissues analysis suggested that STn glycosylation provided cancer specificity to GLUT1. In conclusion, STn is a biomarker of worst prognosis in EC and GLUT1-STn glycoforms may be used to increase its specificity on the stratification and targeting of aggressive ESCC forms.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Transportador de Glucose Tipo 1/metabolismo , Proteoma/análise , Software , Antígenos Glicosídicos Associados a Tumores/química , Apoptose , Proliferação de Células , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/química , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Prognóstico , Estudos Prospectivos , Taxa de Sobrevida , Células Tumorais Cultivadas
15.
Cancers (Basel) ; 12(4)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32252346

RESUMO

BACKGROUND: Gastric cancer (GC) is a major health burden worldwide, with half of patients developing metastases within 5 years after treatment, urging novel biomarkers for diagnosis and efficient therapeutic targeting. Sialyl-Lewis A (SLeA), a terminal glycoepitope of glycoproteins and glycolipids, offers tremendous potential towards this objective. It is rarely expressed in healthy tissues and blood cells, while it is present in highly metastatic cell lines and metastases. SLeA is also involved in E-selectin mediated metastasis, making it an ideal target to control disease dissemination. METHODS AND RESULTS: To improve cancer specificity, we have explored the SLeA-glycoproteome of six GC cell models, with emphasis on glycoproteins showing affinity for E-selectin. A novel bioinformatics-assisted algorithm identified nucleolin (NCL), a nuclear protein, as a potential targetable biomarker potentially involved in metastasis. Several immunoassays, including Western blot and in situ proximity ligation reinforced the existence of cell surface NCL-SLeA glycoforms in GC. The NCL-SLeA glycophenotype was associated with decreased survival and was not reflected in relevant healthy tissues. CONCLUSIONS: NCL-SLeA is a biomarker of poor prognosis in GC holding potential for precise cancer targeting. This is the first report describing SLeA in preferentially nuclear protein, setting a new paradigm for cancer biomarkers discovery and targeted therapies.

16.
Theranostics ; 10(11): 4903-4928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308758

RESUMO

Esophageal (OC), gastric (GC) and colorectal (CRC) cancers are amongst the digestive track tumors with higher incidence and mortality due to significant molecular heterogeneity. This constitutes a major challenge for patients' management at different levels, including non-invasive detection of the disease, prognostication, therapy selection, patient's follow-up and the introduction of improved and safer therapeutics. Nevertheless, important milestones have been accomplished pursuing the goal of molecular-based precision oncology. Over the past five years, high-throughput technologies have been used to interrogate tumors of distinct clinicopathological natures, generating large-scale biological datasets (e.g. genomics, transcriptomics, and proteomics). As a result, GC and CRC molecular subtypes have been established to assist patient stratification in the clinical settings. However, such molecular panels still require refinement and are yet to provide targetable biomarkers. In parallel, outstanding advances have been made regarding targeted therapeutics and immunotherapy, paving the way for improved patient care; nevertheless, important milestones towards treatment personalization and reduced off-target effects are also to be accomplished. Exploiting the cancer glycoproteome for unique molecular fingerprints generated by dramatic alterations in protein glycosylation may provide the necessary molecular rationale towards this end. Therefore, this review presents functional and clinical evidences supporting a reinvestigation of classical serological glycan biomarkers such as sialyl-Tn (STn) and sialyl-Lewis A (SLeA) antigens from a tumor glycoproteomics perspective. We anticipate that these glycobiomarkers that have so far been employed in non-invasive cancer prognostication may hold unexplored value for patients' management in precision oncology settings.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Esofágicas/diagnóstico , Medicina de Precisão , Antígeno Sialil Lewis X/metabolismo , Neoplasias Gástricas/diagnóstico , Glicômica/métodos , Glicoproteínas/metabolismo , Glicosilação , Humanos , Proteômica/métodos
17.
Pharmaceutics ; 12(3)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164343

RESUMO

Maturation of human Dendritic Cells (DCs) is characterized by increased expression of antigen presentation molecules, and overall decreased levels of sialic acid at cell surface. Here, we aimed to identify sialylated proteins at DC surface and comprehend their role and modulation. Mass spectrometry analysis of DC's proteins, pulled down by a sialic acid binding lectin, identified molecules of the major human histocompatibility complex class I (MHC-I), known as human leucocyte antigen (HLA). After desialylation, DCs showed significantly higher reactivity with antibodies specific for properly folded MHC-I-ß2-microglobulin complex and for ß2-microglobulin but showed significant lower reactivity with an antibody specific for free MHC-I heavy chain. Similar results for antibody reactivities were observed for TAP2-deficient lymphoblastoid T2 cells, which express HLA-A*02:01. Using fluorescent peptide specifically fitting the groove of HLA-A*02:01, instead of antibody staining, also showed higher peptide binding on desialylated cells, confirming higher surface expression of MHC-I complex. A decay assay showed that desialylation doubled the half-life of MHC-I molecules at cell surface in both DCs and T2 cells. The biological impact of DC´s desialylation was evaluated in co-cultures with autologous T cells, showing higher number and earlier immunological synapses, and consequent significantly increased production of IFN-γ by T cells. In summary, sialic acid content modulates the expression and stability of complex MHC-I, which may account for the improved DC-T synapses.

18.
Int J Pharm ; 570: 118646, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31465836

RESUMO

Gastric cancer is the third leading cause of cancer-related death worldwide, with half of patients developing metastasis within 5 years after curative treatment. Moreover, many patients cannot tolerate or complete systemic treatment due severe side-effects, reducing their effectiveness. Thus, targeted therapeutics are warranted to improve treatment outcomes and reduce toxicity. Herein, poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with 5-fluorouracil (5-FU) and paclitaxel were surface-functionalized with a monoclonal antibody targeting sialyl-Lewis A (sLeA), a known glycan mediating hematogenous metastasis. Nanoparticles, ranging from 137 to 330 nm, enabled the controlled release of cytotoxic drugs at neutral and acid pH, supporting potential for intravenous and oral administration. Nanoencapsulation also reduced the initial toxicity of the drugs against gastric cells, suggesting it may constitute a safer administration vehicle. Furthermore, nanoparticle functionalization significantly enhanced targeting to sLeA cells in vitro and ex vivo (over 40% in comparison to non-targeted nanoparticles). In summary, a glycoengineered nano-vehicle was successfully developed to deliver 5-FU and paclitaxel therapeutic agents to metastatic gastric cancer cells. We anticipate that this may constitute an important milestone to establish improved targeted therapeutics against gastric cancer. Given the pancarcinomic nature of the sLeA antigen, the translation of this solution to other models may be also envisaged.


Assuntos
Fluoruracila/administração & dosagem , Fluoruracila/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Neoplasias Gástricas/tratamento farmacológico , Anticorpos Monoclonais/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química
19.
Front Oncol ; 9: 380, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31157165

RESUMO

Decades of research have disclosed a plethora of alterations in protein glycosylation that decisively impact in all stages of disease and ultimately contribute to more aggressive cell phenotypes. The biosynthesis of cancer-associated glycans and its reflection in the glycoproteome is driven by microenvironmental cues and these events act synergistically toward disease evolution. Such intricate crosstalk provides the molecular foundations for the activation of relevant oncogenic pathways and leads to functional alterations driving invasion and disease dissemination. However, it also provides an important source of relevant glyco(neo)epitopes holding tremendous potential for clinical intervention. Therefore, we highlight the transversal nature of glycans throughout the currently accepted cancer hallmarks, with emphasis on the crosstalk between glycans and the tumor microenvironment stromal components. Focus is also set on the pressing need to include glycans and glycoconjugates in comprehensive panomics models envisaging molecular-based precision medicine capable of improving patient care. We foresee that this may provide the necessary rationale for more comprehensive studies and molecular-based intervention.

20.
N Biotechnol ; 49: 77-87, 2019 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-30273682

RESUMO

Circulating tumour cells (CTCs) originating from a primary tumour, lymph nodes and distant metastases hold great potential for liquid biopsies by providing a molecular fingerprint for disease dissemination and its temporal evolution through the course of disease management. CTC enumeration, classically defined on the basis of surface expression of Epithelial Cell Adhesion Molecule (EpCAM) and absence of the pan-leukocyte marker CD45, has been shown to correlate with clinical outcome. However, existing approaches introduce bias into the subsets of captured CTCs, which may exclude biologically and clinically relevant subpopulations. Here we explore the overexpression of the membrane protein O-glycan sialyl-Tn (STn) antigen in advanced bladder and colorectal tumours, but not in blood cells, to propose a novel CTC isolation technology. Using a size-based microfluidic device, we show that the majority (>90%) of CTCs isolated from the blood of patients with metastatic bladder and colorectal cancers express the STn antigen, supporting a link with metastasis. STn+ CTC counts were significantly higher than EpCAM-based detection in colorectal cancer, providing a more efficient cell-surface biomarker for CTC isolation. Exploring this concept, we constructed a glycan affinity-based microfluidic device for selective isolation of STn+ CTCs and propose an enzyme-based strategy for the recovery of viable cancer cells for downstream investigations. Finally, clinically relevant cancer biomarkers (transcripts and mutations) in bladder and colorectal tumours, were identified in cells isolated by microfluidics, confirming their malignant origin and highlighting the potential of this technology in the context of precision oncology.


Assuntos
Antígenos Glicosídicos Associados a Tumores/metabolismo , Biomarcadores Tumorais/metabolismo , Oncologia/métodos , Microfluídica/métodos , Células Neoplásicas Circulantes/metabolismo , Medicina de Precisão/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Separação Celular , Análise Mutacional de DNA , Molécula de Adesão da Célula Epitelial/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polissacarídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...